Imprimer

Votre recherche pour: VARLP041222ACRO00003


2  résultat(s)

SearchResultCount:"2"

Sort Results

Vue liste Nouvelle Vue

Evaluer les résultats de votre recherche

Référence Produit: (BOSSBS-4004R-FITC)
Fournisseur: Bioss
Description: Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-4004R-CY5)
Fournisseur: Bioss
Description: Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-4004R-A750)
Fournisseur: Bioss
Description: Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilisation of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilisation. In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6946R-A680)
Fournisseur: Bioss
Description: Plays a crucial role in virion assembly and budding. Expressed late in the virus life cycle, it acts as an inhibitor of viral transcription and RNA synthesis by interacting with the viral polymerase L (By similarity). Presumably recruits the NP encapsidated genome to cellular membranes at budding sites via direct interaction with NP. Plays critical roles in the final steps of viral release by interacting with host TSG101, a member of the vacuolar protein-sorting pathway and using other cellular host proteins involved in vesicle formation pathway. The budding of the virus progeny occurs after association of protein Z with the viral glycoprotein complex SSP-GP1-GP2 at the cell periphery, step that requires myristoylation of protein Z. Also selectively represses protein production by associating with host eIF4E
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6946R-A750)
Fournisseur: Bioss
Description: Plays a crucial role in virion assembly and budding. Expressed late in the virus life cycle, it acts as an inhibitor of viral transcription and RNA synthesis by interacting with the viral polymerase L (By similarity). Presumably recruits the NP encapsidated genome to cellular membranes at budding sites via direct interaction with NP. Plays critical roles in the final steps of viral release by interacting with host TSG101, a member of the vacuolar protein-sorting pathway and using other cellular host proteins involved in vesicle formation pathway. The budding of the virus progeny occurs after association of protein Z with the viral glycoprotein complex SSP-GP1-GP2 at the cell periphery, step that requires myristoylation of protein Z. Also selectively represses protein production by associating with host eIF4E
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6571R-A750)
Fournisseur: Bioss
Description: Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L15E family of ribosomal proteins. It is located in the cytoplasm. This gene shares sequence similarity with the yeast ribosomal protein YL10 gene. Although this gene has been referred to as RPL10, its official symbol is RPL15. This gene has been shown to be overexpressed in some esophageal tumors compared to normal matched tissues. Alternate splicing results in multiple transcript variants. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6571R-A555)
Fournisseur: Bioss
Description: Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L15E family of ribosomal proteins. It is located in the cytoplasm. This gene shares sequence similarity with the yeast ribosomal protein YL10 gene. Although this gene has been referred to as RPL10, its official symbol is RPL15. This gene has been shown to be overexpressed in some esophageal tumors compared to normal matched tissues. Alternate splicing results in multiple transcript variants. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6571R-A680)
Fournisseur: Bioss
Description: Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L15E family of ribosomal proteins. It is located in the cytoplasm. This gene shares sequence similarity with the yeast ribosomal protein YL10 gene. Although this gene has been referred to as RPL10, its official symbol is RPL15. This gene has been shown to be overexpressed in some esophageal tumors compared to normal matched tissues. Alternate splicing results in multiple transcript variants. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6571R-CY3)
Fournisseur: Bioss
Description: Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L15E family of ribosomal proteins. It is located in the cytoplasm. This gene shares sequence similarity with the yeast ribosomal protein YL10 gene. Although this gene has been referred to as RPL10, its official symbol is RPL15. This gene has been shown to be overexpressed in some esophageal tumors compared to normal matched tissues. Alternate splicing results in multiple transcript variants. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6972R-CY5)
Fournisseur: Bioss
Description: RNA polymerase II (Pol II) is an enzyme that is composed of twelve subunits and is responsible for the transcription of protein-coding genes. Transcription initiation requires Pol II-mediated recruitment of transcription machinery to a target promoter, thereby allowing transcription to begin. The largest subunit of Pol II (referred to as RPB1 or RPB205) is a 1,840 amino acid protein that contains one C2H2-type zinc finger and a C-terminal domain comprised of several heptapeptide repeats. Although Pol II function requires the cooperation of all twelve subunits, the largest subunit conveys Pol II catalytic activity and, together with the second largest subunit, forms the active center of the Pol II enzyme. Additionally, the large subunit participates in forming the DNA-binding domain of Pol II, a groove that is necessary for transcription of the DNA template. Without proper function of the large subunit, mRNA synthesis and subsequent transcription elongation cannot occur.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6972R-FITC)
Fournisseur: Bioss
Description: RNA polymerase II (Pol II) is an enzyme that is composed of twelve subunits and is responsible for the transcription of protein-coding genes. Transcription initiation requires Pol II-mediated recruitment of transcription machinery to a target promoter, thereby allowing transcription to begin. The largest subunit of Pol II (referred to as RPB1 or RPB205) is a 1,840 amino acid protein that contains one C2H2-type zinc finger and a C-terminal domain comprised of several heptapeptide repeats. Although Pol II function requires the cooperation of all twelve subunits, the largest subunit conveys Pol II catalytic activity and, together with the second largest subunit, forms the active center of the Pol II enzyme. Additionally, the large subunit participates in forming the DNA-binding domain of Pol II, a groove that is necessary for transcription of the DNA template. Without proper function of the large subunit, mRNA synthesis and subsequent transcription elongation cannot occur.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6972R-HRP)
Fournisseur: Bioss
Description: RNA polymerase II (Pol II) is an enzyme that is composed of twelve subunits and is responsible for the transcription of protein-coding genes. Transcription initiation requires Pol II-mediated recruitment of transcription machinery to a target promoter, thereby allowing transcription to begin. The largest subunit of Pol II (referred to as RPB1 or RPB205) is a 1,840 amino acid protein that contains one C2H2-type zinc finger and a C-terminal domain comprised of several heptapeptide repeats. Although Pol II function requires the cooperation of all twelve subunits, the largest subunit conveys Pol II catalytic activity and, together with the second largest subunit, forms the active center of the Pol II enzyme. Additionally, the large subunit participates in forming the DNA-binding domain of Pol II, a groove that is necessary for transcription of the DNA template. Without proper function of the large subunit, mRNA synthesis and subsequent transcription elongation cannot occur.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6972R-A555)
Fournisseur: Bioss
Description: RNA polymerase II (Pol II) is an enzyme that is composed of twelve subunits and is responsible for the transcription of protein-coding genes. Transcription initiation requires Pol II-mediated recruitment of transcription machinery to a target promoter, thereby allowing transcription to begin. The largest subunit of Pol II (referred to as RPB1 or RPB205) is a 1,840 amino acid protein that contains one C2H2-type zinc finger and a C-terminal domain comprised of several heptapeptide repeats. Although Pol II function requires the cooperation of all twelve subunits, the largest subunit conveys Pol II catalytic activity and, together with the second largest subunit, forms the active center of the Pol II enzyme. Additionally, the large subunit participates in forming the DNA-binding domain of Pol II, a groove that is necessary for transcription of the DNA template. Without proper function of the large subunit, mRNA synthesis and subsequent transcription elongation cannot occur.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6946R-CY5.5)
Fournisseur: Bioss
Description: Plays a crucial role in virion assembly and budding. Expressed late in the virus life cycle, it acts as an inhibitor of viral transcription and RNA synthesis by interacting with the viral polymerase L (By similarity). Presumably recruits the NP encapsidated genome to cellular membranes at budding sites via direct interaction with NP. Plays critical roles in the final steps of viral release by interacting with host TSG101, a member of the vacuolar protein-sorting pathway and using other cellular host proteins involved in vesicle formation pathway. The budding of the virus progeny occurs after association of protein Z with the viral glycoprotein complex SSP-GP1-GP2 at the cell periphery, step that requires myristoylation of protein Z. Also selectively represses protein production by associating with host eIF4E
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6946R-CY5)
Fournisseur: Bioss
Description: Plays a crucial role in virion assembly and budding. Expressed late in the virus life cycle, it acts as an inhibitor of viral transcription and RNA synthesis by interacting with the viral polymerase L (By similarity). Presumably recruits the NP encapsidated genome to cellular membranes at budding sites via direct interaction with NP. Plays critical roles in the final steps of viral release by interacting with host TSG101, a member of the vacuolar protein-sorting pathway and using other cellular host proteins involved in vesicle formation pathway. The budding of the virus progeny occurs after association of protein Z with the viral glycoprotein complex SSP-GP1-GP2 at the cell periphery, step that requires myristoylation of protein Z. Also selectively represses protein production by associating with host eIF4E
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6571R-A350)
Fournisseur: Bioss
Description: Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L15E family of ribosomal proteins. It is located in the cytoplasm. This gene shares sequence similarity with the yeast ribosomal protein YL10 gene. Although this gene has been referred to as RPL10, its official symbol is RPL15. This gene has been shown to be overexpressed in some esophageal tumors compared to normal matched tissues. Alternate splicing results in multiple transcript variants. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.
UOM: 1 * 100 µl


Prix sur demande
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 01 45 14 89 12.
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 01 45 14 89 12.
Ces articles ne peuvent pas être ajoutés à votre panier en raison des exigences réglementaires. Veuillez envoyer un e-mail à webshop.fr@vwr.com
Veuillez noter qu'une autorisation peut être nécessaire pour commander ce produit. Un représentant de VWR vous contactera si votre commande le nécessite.
Ce produit a été bloqué par votre entreprise. Veuillez s'il vous plait contacter votre service achats pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Ce produit n'est plus disponible. Des alternatives peuvent être disponibles en faisant une recherche avec la référence VWR ci-dessus. Si vous avez besoin d'aide, s'il vous plaît appelez le Service Clients au 0825 02 30 30 (0,18 € TTC/mn).
17 - 2 of 2
no targeter for Bottom