Imprimer

Votre recherche pour: Celecoxib+carboxylic+acid-acyl-\u03B2-D-glucuronide


120 989  résultat(s)

SearchResultCount:"120989"

Sort Results

Vue liste Nouvelle Vue

Evaluer les résultats de votre recherche

Référence Produit: (BOSSBS-3936R-FITC)
Fournisseur: Bioss
Description: Acyl-CoA synthetase probably involved in bile acid metabolism. Proposed to activate C27 precurors of bile acids to their CoA thioesters derivatives before side chain cleavage via peroxisomal beta-oxidation occurs. In vitro, activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol. Does not utilize C24 bile acids as substrates. In vitro, also activates long- and branched-chain fatty acids and may have additional roles in fatty acid metabolism. May be involved in translocation of long-chain fatty acids (LFCA) across membranes (By similarity).
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-9454R-HRP)
Fournisseur: Bioss
Description: Acyl-coenzyme A synthetases (ACSs) are a large family of related enzymes known to catalyze the fundamental initial reaction in fatty acid metabolism. The ACS family is roughly characterized based on fatty acid chain length preference amongst different members. The nomenclature in the ACS family reflects this relationship and includes short-chain ACS (ACSS), medium-chain ACS (ACSM), long-chain ACS (ACSL) and very long-chain ACS (ACSVL). ACSVL family members are capable of activating both long (LCFAs) and very long-chain fatty acids (VLCFAs). There are six members of the human ACSVL subfamily, which have been described as solute carrier family 27A (SLC27A) gene products. They represent a group of evolutionarily conserved fatty acid transport proteins (FATPs) recognized for their role in facilitating translocation of long-chain fatty acids across the plasma membrane. The family nomenclature has recently been unified with their respective acyl-CoA synthetase family designations: ACSVL1 (FATP2), ACSVL2 (FATP6), ACSVL3 (FATP3), ACSVL4 (FATP1), ACSVL5 (FATP4) and ACSVL6 (FATP5). ACSVLs have unique expression patterns and are found in major organs of fatty acid metabolism, such as adipose tissue, liver, heart and kidney. ACSVL2 is a 619 amino acid multi-pass membrane protein. Encoded by a gene that maps to human chromosome 5q23.3, ACSVL2 may function as the predominant fatty acid protein transporter in heart.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6073R-A750)
Fournisseur: Bioss
Description: Sodium-dependent lysophosphatidylcholine (LPC) symporter, which plays an essential role for blood-brain barrier formation and function. Specifically expressed in endothelium of the blood-brain barrier of micro-vessels and transports LPC into the brain. Transport of LPC is essential because it constitutes the major mechanism by which docosahexaenoic acid (DHA), an omega-3 fatty acid that is essential for normal brain growth and cognitive function, enters the brain. Transports LPC carrying long-chain fatty acids such LPC oleate and LPC palmitate with a minimum acyl chain length of 14 carbons. Does not transport docosahexaenoic acid in unesterified fatty acid. Specifically required for blood-brain barrier formation and function, probably by mediating lipid transport. Not required for central nervous system vascular morphogenesis (By similarity). Acts as a transporter for tunicamycin, an inhibitor of asparagine-linked glycosylation. In placenta, acts as a receptor for ERVFRD-1/syncytin-2 and is required for trophoblast fusion (PubMed:18988732).
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6073R-CY7)
Fournisseur: Bioss
Description: Sodium-dependent lysophosphatidylcholine (LPC) symporter, which plays an essential role for blood-brain barrier formation and function. Specifically expressed in endothelium of the blood-brain barrier of micro-vessels and transports LPC into the brain. Transport of LPC is essential because it constitutes the major mechanism by which docosahexaenoic acid (DHA), an omega-3 fatty acid that is essential for normal brain growth and cognitive function, enters the brain. Transports LPC carrying long-chain fatty acids such LPC oleate and LPC palmitate with a minimum acyl chain length of 14 carbons. Does not transport docosahexaenoic acid in unesterified fatty acid. Specifically required for blood-brain barrier formation and function, probably by mediating lipid transport. Not required for central nervous system vascular morphogenesis (By similarity). Acts as a transporter for tunicamycin, an inhibitor of asparagine-linked glycosylation. In placenta, acts as a receptor for ERVFRD-1/syncytin-2 and is required for trophoblast fusion (PubMed:18988732).
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-13312R-CY5)
Fournisseur: Bioss
Description: GCDH is a 438 amino acid protein that localizes to the mitochondrial matrix and belongs to the acyl-CoA dehydrogenase family. Existing as a homotetramer, GCDH uses FAD as a cofactor to catalyze the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L-hydroxylysine and L-tryptophan metabolism. While GCDH exists as both a long and short isoform, only the long isoform is a functionally active protein. Defects in the gene encoding GCDH are the cause of glutaric acidemia type I (GA-I), an autosomal recessive disorder that is characterized by the accumulation of glutaconic acid and is associated with such symptoms as progressive dystonia and athetosis due to gliosis and neuronal loss in the basal ganglia.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-13312R-A680)
Fournisseur: Bioss
Description: GCDH is a 438 amino acid protein that localizes to the mitochondrial matrix and belongs to the acyl-CoA dehydrogenase family. Existing as a homotetramer, GCDH uses FAD as a cofactor to catalyze the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L-hydroxylysine and L-tryptophan metabolism. While GCDH exists as both a long and short isoform, only the long isoform is a functionally active protein. Defects in the gene encoding GCDH are the cause of glutaric acidemia type I (GA-I), an autosomal recessive disorder that is characterized by the accumulation of glutaconic acid and is associated with such symptoms as progressive dystonia and athetosis due to gliosis and neuronal loss in the basal ganglia.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-4590R-CY5.5)
Fournisseur: Bioss
Description: Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of ARNTL/BMAL1 in the blood vessels (By similarity).
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6073R-A555)
Fournisseur: Bioss
Description: Sodium-dependent lysophosphatidylcholine (LPC) symporter, which plays an essential role for blood-brain barrier formation and function. Specifically expressed in endothelium of the blood-brain barrier of micro-vessels and transports LPC into the brain. Transport of LPC is essential because it constitutes the major mechanism by which docosahexaenoic acid (DHA), an omega-3 fatty acid that is essential for normal brain growth and cognitive function, enters the brain. Transports LPC carrying long-chain fatty acids such LPC oleate and LPC palmitate with a minimum acyl chain length of 14 carbons. Does not transport docosahexaenoic acid in unesterified fatty acid. Specifically required for blood-brain barrier formation and function, probably by mediating lipid transport. Not required for central nervous system vascular morphogenesis (By similarity). Acts as a transporter for tunicamycin, an inhibitor of asparagine-linked glycosylation. In placenta, acts as a receptor for ERVFRD-1/syncytin-2 and is required for trophoblast fusion (PubMed:18988732).
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-0494R-A680)
Fournisseur: Bioss
Description: ETFA participates in catalyzing the initial step of the mitochondrial fatty acid beta-oxidation. It shuttles electrons between primary flavoprotein dehydrogenases and the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase. Defects in electron-transfer-flavoprotein have been implicated in type II glutaricaciduria in which multiple acyl-CoA dehydrogenase deficiencies result in large excretion of glutaric, lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. Two transcript variants encoding different isoforms have been found for this gene.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-4888R-CY5.5)
Fournisseur: Bioss
Description: Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-0494R-FITC)
Fournisseur: Bioss
Description: ETFA participates in catalyzing the initial step of the mitochondrial fatty acid beta-oxidation. It shuttles electrons between primary flavoprotein dehydrogenases and the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase. Defects in electron-transfer-flavoprotein have been implicated in type II glutaricaciduria in which multiple acyl-CoA dehydrogenase deficiencies result in large excretion of glutaric, lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-3737R-HRP)
Fournisseur: Bioss
Description: Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-13312R)
Fournisseur: Bioss
Description: GCDH is a 438 amino acid protein that localizes to the mitochondrial matrix and belongs to the acyl-CoA dehydrogenase family. Existing as a homotetramer, GCDH uses FAD as a cofactor to catalyze the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L-hydroxylysine and L-tryptophan metabolism. While GCDH exists as both a long and short isoform, only the long isoform is a functionally active protein. Defects in the gene encoding GCDH are the cause of glutaric acidemia type I (GA-I), an autosomal recessive disorder that is characterized by the accumulation of glutaconic acid and is associated with such symptoms as progressive dystonia and athetosis due to gliosis and neuronal loss in the basal ganglia.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-4590R-A350)
Fournisseur: Bioss
Description: Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of ARNTL/BMAL1 in the blood vessels (By similarity).
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-4590R)
Fournisseur: Bioss
Description: Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of ARNTL/BMAL1 in the blood vessels (By similarity).
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6073R-A680)
Fournisseur: Bioss
Description: Sodium-dependent lysophosphatidylcholine (LPC) symporter, which plays an essential role for blood-brain barrier formation and function. Specifically expressed in endothelium of the blood-brain barrier of micro-vessels and transports LPC into the brain. Transport of LPC is essential because it constitutes the major mechanism by which docosahexaenoic acid (DHA), an omega-3 fatty acid that is essential for normal brain growth and cognitive function, enters the brain. Transports LPC carrying long-chain fatty acids such LPC oleate and LPC palmitate with a minimum acyl chain length of 14 carbons. Does not transport docosahexaenoic acid in unesterified fatty acid. Specifically required for blood-brain barrier formation and function, probably by mediating lipid transport. Not required for central nervous system vascular morphogenesis (By similarity). Acts as a transporter for tunicamycin, an inhibitor of asparagine-linked glycosylation. In placenta, acts as a receptor for ERVFRD-1/syncytin-2 and is required for trophoblast fusion (PubMed:18988732).
UOM: 1 * 100 µl


Prix sur demande
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 01 45 14 89 12.
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 01 45 14 89 12.
Ces articles ne peuvent pas être ajoutés à votre panier en raison des exigences réglementaires. Veuillez envoyer un e-mail à webshop.fr@vwr.com
Veuillez noter qu'une autorisation peut être nécessaire pour commander ce produit. Un représentant de VWR vous contactera si votre commande le nécessite.
Ce produit a été bloqué par votre entreprise. Veuillez s'il vous plait contacter votre service achats pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Ce produit n'est plus disponible. Des alternatives peuvent être disponibles en faisant une recherche avec la référence VWR ci-dessus. Si vous avez besoin d'aide, s'il vous plaît appelez le Service Clients au 0825 02 30 30 (0,18 € TTC/mn).
433 - 448 of 120 989
no targeter for Bottom