Imprimer

Votre recherche pour: 24(S)-Hydroxycholesterol


15 121  résultat(s)

SearchResultCount:"15121"

Sort Results

Vue liste Nouvelle Vue

Evaluer les résultats de votre recherche

Référence Produit: (BOSSBS-6480R-HRP)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-CY7)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-A350)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-CY3)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-A647)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-FITC)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-A488)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-A555)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-A750)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesising a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-CY5)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6480R-A680)
Fournisseur: Bioss
Description: Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesising a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6217R-CY7)
Fournisseur: Bioss
Description: Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6217R-CY5.5)
Fournisseur: Bioss
Description: Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6217R-HRP)
Fournisseur: Bioss
Description: Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6217R-A680)
Fournisseur: Bioss
Description: Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte sise and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1.
UOM: 1 * 100 µl


Référence Produit: (BOSSBS-6217R-A488)
Fournisseur: Bioss
Description: Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1.
UOM: 1 * 100 µl


Prix sur demande
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 01 45 14 89 12.
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 01 45 14 89 12.
Ces articles ne peuvent pas être ajoutés à votre panier en raison des exigences réglementaires. Veuillez envoyer un e-mail à webshop.fr@vwr.com
Veuillez noter qu'une autorisation peut être nécessaire pour commander ce produit. Un représentant de VWR vous contactera si votre commande le nécessite.
Ce produit a été bloqué par votre entreprise. Veuillez s'il vous plait contacter votre service achats pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Ce produit n'est plus disponible. Des alternatives peuvent être disponibles en faisant une recherche avec la référence VWR ci-dessus. Si vous avez besoin d'aide, s'il vous plaît appelez le Service Clients au 0825 02 30 30 (0,18 € TTC/mn).
49 - 64 of 15 121
no targeter for Bottom